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Computational Model of Neuroblastoma Shows that
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Objectives

1. PRIMAGE project.

2. Neuroblastoma.

3. The first multicellular model of neuroblastoma.
4. Model calibration using GPUs.

5. Predictive simulations.
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Explainer

https://vimeo.com/613708072/c59¢67572c or https://kywertheim.com/research/PrimageVideo.mp4
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Neuroblastoma

Louis, Chrystal U., and Jason M. Shohet. "Neuroblastoma: molecular
pathogenesis and therapy." Annual review of medicine 66 (2015): 49-63.

Paediatric cancer:

e Most common extra-cranial
solid tumour in children.

e 15 % of cancer-related
deaths in children.

e Adrenal medulla is usually
the primary site.
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Marshall, Glenn M., et al. "The prenatal origins of cancer." Nature Reviews

Cancer 14.4 (2014): 277-289.

pathogenesis and therapy." Annual review of medicine 66 (2015): 49-63.

Paediatric cancer:

Neural crest:

* Most common extra-cranial * Transient structure during
solid tumour in children. embryonic development.

* 15 % of cancer-related * Migrate and differentiate into
deaths in children. different cell types.

* Adrenal medulla is usually « Sympathetic nervous system.

the primary site.



Neuroblastoma
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Louis, Chrystal U., and Jason M. Shohet. "Neuroblastoma: molecular
pathogenesis and therapy." Annual review of medicine 66 (2015): 49-63.

Marshall, Glenn M., et al. "The prenatal origins of cancer." Nature Reviews
Cancer 14.4 (2014): 277-289.

Sokol, Elizabeth, and Ami V. Desai. "The Evolution of Risk Classification for Neuroblastoma." Children 6.2 (2019): 27.

Paediatric cancer: Neural crest:
*  Most common extra-cranial .

Heterogeneity:
Transient structure during * Spontaneous regression.

solid tumour in children.

e 15 % of cancer-related
deaths in children.

e Adrenal medulla is usually
the primary site.

embryonic development. .

Migrate and differentiate into
different cell types.
Sympathetic nervous system.

Drug resistance and metastasis even after
multi-modal treatment.

*  MYCN amplification.

* <50 % survival rate in high-risk cases.



Party Conversation Starter 1.

Why do paediatric cancers usually have fewer mutations
than adult cancers?

An adult, by definition, has been around for longer than a
child. More time, more mutations.



Party Conversation Starter 2.

What are the key hallmarks of cancer?

. Sustained proliferation.

Limitless replicative potential.

signaling

1

2

3. Resistance to cell death.
4. Immune evasion.
5

6

Resisting
cell death

Blood supply.
Motility.

angiogenesis

Enabling replicative
immortality

Hanahan, Douglas, and Robert A. Weinberg. "Hallmarks of cancer: the next generation." cell 144.5 (2011): 646-674.
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Model structure

Part 1: continuous automaton.

e Voxelate the tumour
microenvironment.

e Spatial distributions of cells and
matrix.

e Oxygen, nutrients, and
chemotherapeutic drugs (uniform).

e Inflammation (uniform).



Model structure

Apoptosis

Cell cycling

Jjumba, Anthony, and Suzana Dragicevic. "Integrating GIS-based
geo-atom theory and voxel automata to simulate the dispersal of

Part 2: discrete agentS. airborne pollutants." Transactions in GIS 19.4 (2015): 582-603.
® Neuroblasts and Schwann cells.
e 3D von Neumann neighbourhood in the
Part 1: continuous automaton. continuous automaton.
e Voxelate the tumour
microenvironment.
e Spatial distributions of cells and
matrix.
e Oxygen, nutrients, and
chemotherapeutic drugs (uniform).
e Inflammation (uniform).



Model structure
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Jjumba, Anthony, and Suzana Dragicevic. "Integrating GIS-based
geo-atom theory and voxel automata to simulate the dispersal of
Part 2, discrete agentS airborne pollutants." Transactions in GIS 19.4 (2015): 582-603.
® Neuroblasts and Schwann cells.
e 3D von Neumann neighbourhood in the
Part 1: continuous automaton. continuous automaton.
e Voxelate the tumour e Mutations, gene expression levels, and DNA
microenvironment. status (short telomeres, unreplicated, and
e Spatial distributions of cells and generic damage).

matrix.
e Oxygen, nutrients, and
chemotherapeutic drugs (uniform).
e Inflammation (uniform).



Model structure

Part 2: discrete agents.
Neuroblasts and Schwann cells.

3D von Neumann neighbourhood in the <

o
o
Part 1: continuous automaton.
e Voxelate the tumour o
microenvironment.
e Spatial distributions of cells and
matrix. ®
e Oxygen, nutrients, and o

chemotherapeutic drugs (uniform).
e Inflammation (uniform).
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Jjumba, Anthony, and Suzana Dragicevic. "Integrating GIS-based
geo-atom theory and voxel automata to simulate the dispersal of
airborne pollutants." Transactions in GIS 19.4 (2015): 582-603.

continuous automaton.

Mutations, gene expression levels, and DNA
status (short telomeres, unreplicated, and
generic damage).

https://biologydictionary.net/cell-cycle/

Cell cycling (proliferation and division).
Cell death (apoptosis and necrosis). = o818
(apop ) N
Chromosome Cell __[8 E8
- *ﬁ? E%?

https://sphweb.bumc.bu.edu/otlt/mph-modules/ph/aging/aging3.html



Model structure

Pathmanathan, P., et al. "A computational study of discrete
mechanical tissue models." Physical biology 6.3 (2009): 036001.

Part 3: centre-based mechanical model.

Cell gets bigger throughout cell cycle.
Migration resolves contact inhibition.

Boundary conditions and matrix
abundance.

Fi = Uesr

-
| ap
O i — ;1 R

8ij = Ri+ Rj — |Iri — |
|F;| = k16;

dr; Uesr Scales with the
dt abundance of matrix.

Algorithm implementing the model.

Cell-Cell overlap.

Linear force law.

Equation of motion.

Iterate these steps until convergence.



Dynamic simulation (one time step = one hour in
the patient’s life)

1. Each cell senses its microenvironment, modifies its
behaviour, and updates its attributes.

2. Resolve cell-cell overlap using the centre-based
mechanical model.

3. The cells collectively modify their microenvironment.

4. Back to step 1 for the next time step.

Python for model development.

CUDA for large-scale simulations.




Party Conversation Starter 3.

When can we not solve an equation with pencil and paper?

Usually, non-linear equations cannot be solved analytically,
meaning by a finite number of standard operations.

dx
— = kzx
dt
d.:
f = kdt In(1 + %) x* s x? i (—1)F+1xk
n X)=x——+——- =
a(t) dr £ 2 3 k=1 k
f — = F.’./ dt
edl] £ 0
x(t) : : Numerical solution. > 90 % of mathematical models
In —= = kt. Analytic solution.

0 ' in research are non-linear.
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e Cell death triggered by hypoxia. RSS =) (y — f(z:))’

e Growth kinetics. =
® Clinical outcomes and cell behaviours o
associated with different histology types. (Tumilowicz et al. 1970)
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Calibration studies

—— L —

Squid Game. Created by Hwang Dong-hyuk, Netflix, 2021.

Index MYCMN_fnlMAPK _RAMAPK RApPS3 fn p73 fn HIF fn P _cycle siP DNA _di P DNA ¢
677 0.277863 0.2963%6 0.081294 0.121137 0.168345 0.943243 0.529251 0.222474 0.99045

184 0.484521 0.518488 0.252074 0.676754 0.436404 0.653059 0.519600 0.614104 0.76648

2991 0.301635 0.871%96 0.421385 0.797464 0.786514 0.234779 0.385223 0.219635 0.92531

825 0.892225 0.787593 0.215333 0.856983 0.718434 0.925868 0.25681 0.292857 0.98810:

564 0.942648 0.377628 0.002161 0.19209 0.141042 0.59177 0.344412 0.772948 0.77149]

2193 0.761934 0.675797 0.390508 0.893939 0.19777 0.7603859 0.975454 0.337441  0.9600¢
1556 0.501221 0.873769 0.545846 0.085968 0.131161 0.13793 0.153815 0.126268 0.495899¢

675 0.89287 0.529858 0.232187 0.806742 0.690326 0.254842 0.541578 0.989668 0.97136
1892 0.547873 0.673346 0.579237 0.132174 0.816287 0.973364 0.553501 0.631952 0.87172¢
2307 0.832634 0.59399 0.204702 0.913315 0.654981 0.393086 0.472165 0.259098 0.90294:
2198 0.485041 0.909253 0.218517 0.203592 0.042106 0.460473 0.623141 0.795116 0.95873:
1106 0.815021 0.984735 0.400839 0.28017 0.267183 0.39705 0.947455 0.01568 0.10544¢
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Selection process.

Eliminated the 3000 candidates gradually
in a tournament of 6 studies.

The set of parameters that describe the
experiments and observations best.



Party Conversation Starter 4.

What is an inverse problem?

Given a set of observations about the effects (data in the

literature), infer the causes (parameters) responsible for
the observations.



Calibration studies implemented on GPUs

LAME GPU

High computational costs.
e Millions of cells.
® Four months in a patient’s life.
e Stochastic simulations.



Calibration studies implemented on GPUs

FLAME GPU

High computational costs. High-Performance computing.
e Millions of cells. ® GPUs are not just for gaming.
e Four monthsin a patient’slife. e CUDA is used to program GPUs.
e Stochastic simulations. e FLAMEGPU maps model

descriptions to optimised CUDA
code.



Calibration studies implemented on GPUs
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FLAME GPU

High computational costs.
e Millions of cells.

Computational time.

High-Performance computing.

1 TITAN XP GPU,

2 TITAN V GPUs,

® GPUs are not just for gaming.

and 1 TITAN RTX GPU.

® CUDA is used to program GPUs.

e FLAMEGPU maps model

® Four months in a patient’s life.

® Stochastic simulations.

3000 time steps (3000 hours) took

5 to 10 minutes to simulate.

descriptions to optimised CUDA

code.

All 6 studies took around 40 days.

Impractical without GPUs.



Party Conversation Starter 5.

How can one speed up the computation of a Taylor series?

3 n

1(1+F)_’ :\:‘2+I‘ B (_1)k+1xk
T _Z k

k=1

We want the first 1000 termes.

Method 1. Method 2.
Calculate the 1000 terms one by one and add 1. Compute and sum the first 500 terms on
them together on one computer. one computer.

2. Do the same for the next 500 terms on
another computer.
3. Add the two sums for the final result.
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Are macroscopic or microscopic features more
important for neuroblastoma?

Macroscopic features.

Oxygen level

Degree of
differentiation

Cellularity

Abundance of
Schwann cells

MYCN
amplification

TERT ATRX

rearrangement inactivation 24 clones with different

combinations of these
mutations.

ALK p53
activation inactivation

Microscopic features = clonal
composition.
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Are macroscopic or microscopic features more
important for neuroblastoma?

Oxygen level

Degree of

Cellularit
Y differentiation

Abundance of
Schwann cells

MYCN
amplification

TERT ATRX
rearrangement inactivation

ALK p53
activation inactivation

Macroscopic features.

1200 random

combinations of
these 28 variables.

1200 virtual
tumours.

24 clones with different
combinations of these
mutations.

Microscopic features = clonal
composition.

Regression.

Neuroblastoma Neurons

Jin, Zegao, et al. "Development of differentiation modulators and targeted agents for
treating neuroblastoma." European Journal of Medicinal Chemistry (2020): 112818.

Differentiation into heathy neurons.

Progression.




Driving mechanisms of regression and progression
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Even with sufficient
oxygen, neuroblastoma
can only progress without
too many Schwann cells.



Driving mechanisms of regression and progression

Characteristics of regressing neuroblastoma Characteristics of differentiating neuroblastoma Characteristics of prograssing neuroblastoma
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Driving mechanisms of regression and progression

Clustering regressing and progressing cases, using one principal compenent

Potential latent features distinguishing regression from progression

Variance explained

05

04

03

0z

01

0.0 -

FC1 PC2 PC3 FC4

Combined the regression and
progression datasets.

Principal component analysis (PCA)
on the four macroscopic features.

PCZ
T ™

---------------

Distance between two cases

5_

o
1

L
i

Projected the macroscopic features on
the first principal component (PC1)
and produced two clusters there.

Hierarchical clustering and DBSCAN.

Tried to reproduce the two original
datasets without knowing the label of

each case (regression or progression).
Adjusted rand index: 0.748.



Party Conversation Starter 6.

What is unsupervised machine learning?
It aims to find the structure of an unlabelled dataset.

Dimensionality reduction (PCA): Represent heights and
weights of teenagers as one latent feature, their ages.

Clustering: Create grade boundaries in a set of test scores.



Driving mechanisms of regression and progression

Mormalised values
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Heterogeneous M YCN amplification in neuroblastoma: a
SIOP Europe Neuroblastoma Study

Ana P Berbegall'?, Dominik Bogen®, Ulrike Pétschger®, Klaus Beiske®, Nick Bown®, Valérie Combaret”, Raffaella Defferrari®,
Marta Jeison®, Katia Mazzoceo®, Luigi Varesio'®, Ales Vicha'", Shifra Ash'?, Victoria Castel', Carole Coze', Ruth Ladenstein®'®,

Cormac Owens'5, Vassilios Papadakis'”, Ellen Ruud'®, Gabriele Amann'?, Angela R Sementa®, Samuel Navarre'?, Peter F. Ambros®27,

Rosa Moguera' and Inge M. Ambros®

BACKGROUND: In neuroblastoma (NB), the most powerful prognostic marker, the MYCN amplification (MNA), occasionally shows
intratumoural b ity (ITH), Le. c e of MYCN- lified and non-MYCN-amplified tumour cell clones, called
heterogeneous MNA (hetMMA). Prognostication and therapy allocation are still unsolved issues.

METHODS: The SIOPEN Biology group analysed 99 hetMNA NBs focussing on the prognostic significance of MYCN ITH.
RESULTS: Patients <18 months (18 m) showed a better outcome in all stages as compared to older patients (5-year 05 in localised
stages: <18 m: 0.95 + 0.04, >18 m: 0.67 + 0.14, p = 0.011; metastatic: <18 m: 0.76 £ 0.15, >18 m: 0.28 £ 0.09, p = 0.084). The genomic
‘background’, but not MNA clone sizes, correlated significantly with relapse frequency and O5. No relapses occurred in cases of only
numerical chremosomal aberrations. Infilirated bone marrows and relapse tumour cells mostly displayed ne MNA. However, one
stage 4s tumour with segmental chromosomal at showed a h MNA in the relapse.

CONCLUSIONS: This study provides a rationale for the necessary distinction between | and F MNA.
HetMMA tumours have to be evaluated individually, taking age, stage and, most importantly, genomic background into account to
avoid unnecessary upgrading of risk/overtreatment, especially in infants, as well as in order to identify tumours prone to developing
homogeneous MNA.

British Journal of Cancer (2018) 118:1502-1512; httpsy//doi.org/10.1038/541416-018-0098-6




Is having a large initial population a competitive
advantage for the MYCN-amplified clone?

MYCN amplification enrichment in differentiating neuroblastoma

MYCN amplification enrichment in progressing neuroblastoma
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x-axis: initial clone size.
y-axis: final clone size/initial clone size.

Initial MYCH-amplified fraction of cells

The spread at each value on the x-axis

suggests it is not an advantage.

A regressing tumour has no living neuroblasts at the end; dataset not shown.




Is having a large initial population a competitive
advantage for the MYCN-amplified clone?

MYCN amplification enrichment in differentiating neuroblastoma
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Enrichment more obvious in this
dataset. Macroscopic features
favouring progression also select
the MYCN-amplified clone.




Conclusions

1. PRIMAGE project aims to build a cloud-based decision-
making platform for the clinical management of malignant
solid tumours.

2. Built and calibrated the first multicellular model of
neuroblastoma.

3. Macroscopic features of neuroblastoma are better
predictors of disease outcome than clonal composition.

4. Biology is as quantitative as physics.
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